Example 2:
Again, we drew the molecules represented by the formulas in the equation. First let's balance the blue atoms. How many blue atoms are there on the left, or "reactants side" of the equation? How many on the right, or "products side"? In order to get one more atom of blue on the right side, what do we need to add? Yes, we need to add an entire group. So let's do that.
See that we have also added the red coefficient, 2, in front of the formula, BW3 , to reflect the addition. This now balances our blue atoms, but the whites are still unbalanced. How many white atoms do we have on the right side of the equation? [Answer: 6] And how do we get 6 atoms of white on the left hand side? Yes, by adding groups. What is the total number of groups we need on the left to balance the 6 whites on the right?
So now we have another correctly balanced equation.
Example 3:
With this equation, first let's look at the yellow atoms. There is 1 yellow on the left, but 2 yellows on the right. What do we do?
OK. This balances our yellows, but our reds are still unbalanced. What do we do next?
A word of caution here. Many students at this point make a BIG mistake! They actually take atoms AWAY from Y2R3 and change the formula to Y2R2, as shown below! Don't you do this!
|
The ONLY thing we can EVER do in balancing equations, once the formulas are correct, is to ADD groups.
So what groups should we add? If we add one group of R2, as shown below, this still doesn't balance the reds.
Can you guess the secret? The secret is to find the least common multiple, (yes, an application of math!) between the original 2 reds on the left side and the 3 reds on the right. What is the least common multiple of 2 and 3? [Answer: 6] How do we get 6 reds on both sides?
Yes, "3 groups of 2" and "2 groups of 3."
But now the yellows are unbalanced again. What do we do next? Remember, 4 Y does NOT equal Y4.
We change the coefficient in front of "Y" to 4.
So the final balanced equation is:
One last word: When balancing equations, you ALWAYS want the lowest possible numbers. For example, the above equation may also be written as:
All of these equations are also technically "balanced," but on a test ONLY the lowest numbered choice, i.e., "4Y + 3R2 => 2Y2R3" would be correct. We ALWAYS want the equations with the lowest numbers.
Review:
You should now understand the basics for balancing chemical equations.
1. ALL balanced equations must obey the Law of Conservation of Mass, which means that they must have thesame number of atoms of each kind on both sides of the equation.
2. The subscript tells how many atoms of each kind there are in a formula.
3. The coefficient is a multiplier, multiplies every atom in the formula along with its subscript, and is the ONLYnumber which may be changed in balancing equations.(Once formulas are correct, the ONLY way to add atoms is by adding groups.)
4. P.S. You ALWAYS want the lowest possible numbers.
TAKEN FROM : http://balancingequations.info/
No comments:
Post a Comment